Role of Glycine N-Methyltransferase in the Regulation of T-Cell Responses in Experimental Autoimmune Encephalomyelitis

Chung-Hsien Li,1,2 Ming-Hong Lin,3 Shih-Han Chu,1,2 Pang-Hsien Tu,4 Cheng-Chieh Fang,1,2 Chia-Hung Yen,2,5 Peir-In Liang,6 Jason C Huang,7 Yu-Chia Su,8 Huey-Kang Sytwu,3 and Yi-Ming Arthur Chen2,9,10

1Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan; 2Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan; 3Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan; 4Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; 5Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; 6Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; 7Institute of Biomedical Science, National Yang-Ming University, Taipei, Taiwan; 8National Laboratory Animal Center, National Applied Research Laboratories; 9Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; and 10Department of Microbiology and Immunology, Institute of Medical Research and Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan

Glycine N-methyltransferase (GNMT) is known for its function as a tumor suppressor gene. Since 100% of female Gnmt–/– mice developed hepatocellular carcinoma, we hypothesized that Gnmt–/– mice may have defective immune surveillance. In this study, we examined the immune modulation of GNMT in T-cell responses using experimental autoimmune encephalomyelitis (EAE). The results showed that EAE severity was reduced significantly in Gnmt–/– mice. Pathological examination of the spinal cords revealed that Gnmt–/– mice had significantly lower levels of mononuclear cell infiltration and demyelination than the wild-type mice. In addition, quantitative real-time PCR showed that expression levels of proinflammatory cytokines, including interferon (IFN)-γ and interleukin (IL)-17A, were much lower in the spinal cord of Gnmt–/– than in that of wild-type mice. According, myelin oligodendrocyte glycoprotein (MOG)-specific T-cell proliferation and induction of T-helper (Th)1 and Th17 cells were markedly suppressed in MOG35–55-induced Gnmt–/– mice. Moreover, the number of regulatory T (Treg) cells was increased significantly in these mice. When the T-cell receptor was stimulated, the proliferative capacity and the activation status of mTOR-associated downstream signaling were decreased significantly in Gnmt–/– CD4+ T cells via an IL-2- and CD25-independent manner. Moreover, GNMT deficiency enhanced the differentiation of Treg cells without affecting the differentiation of Th1 and Th17 cells. Furthermore, the severity of EAE in mice adoptive transferred with GNMT-deficient CD4+ T cells was much milder than in those with wild-type CD4+ T cells. In summary, our findings suggest that GNMT is involved in the pathogenesis of EAE and plays a crucial role in the regulation of CD4+ T-cell functions.

Online address: http://www.molmed.org
doi: 10.2119/molmed.2014.00133

INTRODUCTION

Glycine N-methyltransferase (GNMT, EC 2.1.1.20) regulates the ratio of S-adenosylhomocysteine (SAH) and S-adenosylmethionine (SAM) to

S-adenosylhomocysteine (SAH) and serves as a folate-binding protein (1,2). GNMT binds environmental carcinogens and prevents the DNA adduct formation and cytotoxicity induced by these carcinogens (3,4). Recently, we reported that GNMT was involved in the mammalian target of rapamycin (mTOR) signal transduction pathway and in intracellular cholesterol trafficking by interacting with DEP domain-containing mTOR-interacting protein (DEPTOR) and Neimann-Pick type C2 (NPC2) proteins, respectively (5,6). Moreover, expression of GNMT was downregulated in human hepatocellular carcinoma (HCC), and 50% male and 100% female Gnmt knock-out (Gnmt–/–) mice spontaneously devel-